
02/20/2008

Technology Infusion of CodeSonar into the
Space Network Ground Segment (RII07)

Final Report

Markland Benson / Code 583 — Goddard Space Flight Center

Abstract—The NASA Software Assurance Research Program
(in part) performs studies as to the feasibility of technologies for
improving the safety, quality, reliability, cost, and performance
of NASA software. This study considers the application of
commercial automated source code analysis tools to mission
critical ground software that is in the operations and sustainnrent
portion of the product lifecycle.

I. INTRODUCTION

This report documents the results of a study funded by the
National Aeronautics and Space Administration (NASA)
Software Assurance Research Program as part of an effort to
determine the feasibility and benefits of incorporating modern
software assurance tools in NASA programs. This study
focused on automated source code analysis tool use within the
Tracking and Data Relay Satellite System (TDRSS) ground
segment. The study was designed to target a single, mature
tool and examine the costs and benefits of the tool against the
current operating practices within the TDRSS ground
segment, while drawing more general conclusions whenever
possible. The tool selected was CodeSonar, which is
produced by GrarnmaTech. This tool was selected to study
because it is advertised to detect a number of problems
experienced by the TDRSS ground segment maintainers and
because the tool has beta support for the Ada language in
addition mature support for C and C++. These three
languages combined account for over 90% of the source code
maintained by the TDRSS ground segment. CodeSonar will
be referred to in general tern7s in this report except where a
specific comparison of this vendor's technology is needed, in
order to maintain the theme of using this specific tool to
evaluate the technology in general.

II. PROBLEM CONTEXT

The NASA TDRSS consists of a fleet of nine
geosynchronous satellites and three ground stations that
provide continuous "bent pipe" communications services at
and below low earth orbit from customer end items
(frequently satellites) to mission control centers. Human
spaceflight, space science, and earth science NASA missions
depend on TDRSS to provide launch support, and on-orbit
communications and tracking services. A sample of the
customer base includes the Space Shuttle, International Space
Station, Hubble Space Telescope, Fermi Ganuna-ray Space

Telescope; Time History of Events and Macroscale
Interactions (THEMIS), Aqua, and Aura as well as the
National Science Foundation (NSF) South Pole TDRSS Relay
(SPTR).

TDRSS customers require high availability of
communications resources and proficiency to maintain health
and safety of assets and in delivery of science and engineering
data. The minimum availability requirement for TDRSS is
97.00% and the minimum proficiency requirement for
delivery of scheduled services by TDRSS is 99.90% while the
standard of excellence for these metrics is 98.00% and
99.97% respectively. One problem with such high availability
and proficiency requirements is that the TDRSS ground
segment is controlled by over eight million lines of software.
Casting aside the space segment ; operator error ; and hardware
concerns, just creating software to meet these expectations is a
challenge since it cannot be exhaustively tested [1].

Measurements from the ground segment discrepancy report
system collected from 2003 to 2008 show that on average
28% of lost service time attributable to the ground segment
per year is caused by software. This number is equivalent to
7% of the overall loss recorded for TDRSS since external
entities, such as the mission operation centers requesting
services, account for the largest portion of data losses and the
external losses are not counted against ground segment
proficiency. Figure I — Loss by Category depicts the
proportions of loss attributed to external entities versus loss
within the control of TDRSS with a further breakdown of the
proportions of loss attributable to hardware, software ; and
operations within TDRSS.

n External n Hardware n Software n Operations

Figure 1— Loss by Category

60%

50%

40%

30%

20%

10%

0%
2003	 2004	 2005	 2006	 2007	 2008

02/20/2008
	

2

Figure 2 — Software Loss Trend (Percentage) shows hours
of loss attributable to software as a percentage of hours of loss
within the ground segment. The trend line is derived via the
least squares method. The measure of percent loss can be
somewhat deceiving in that it does not necessarily indicate
that software is producing fewer errors. In TDRSS, non-
software sources of error are growing as aging hardware
reaches end of life and becomes less reliable, thus the overall
percentage of errors associated with software is reduced.

--*--Software Loss %	 Linear(Software Loss %)

Figure 2 — Software Loss Trend (Percentage)

Figure 3 — Detailed Loss Trends (Horns) distinguishes
hours of loss attributable to software and non-software ground
segment sources. Linear regression trends for the ground
segment as a whole, for non-soft-ware sources ; and for
software sources are also provided. Anecdotal evidence
suggests that improvements in the software trend may be a
result of formal manual software product inspections
introduced in 2006 after a large loss attributable to software as
well as improved software configuration management tools
and methods introduced in 2007. Note the 2003-2006 upward
trend line parallel to non-software sources.

Software Lass	 D Non-Software Loss
Non-Software Trend 	 — — Software Trend

•••••• Ground Segment Trend	 —"2003-20016 SW Trend"

2003	 2004	 2006	 2006	 2007	 2008
Figure 3 — Detailed Loss Trends (Hours)

Despite the overall downward trend in software's
contribution to data loss, some CSCIs are known to be more

error prone than others. Further, a large staff of software
engineers is in place to troubleshoot and enhance the ground
systems software. Process improvement efforts drive
sustainers to looks for efficiencies to reduce software
maintenance effort and to drive software issues to near zero. It
is reasonable to expect that the percentage of data loss
compared to the percenta ge of time that service is provided for
a given component would be roughly equal when defects are
minimized or at least evenly distributed. This expectation is
not fulfilled in reality. For example, CSCI B, which has been
in service for three years, accounted for 21% of the software
induced lost time in 2008 while it accounted for 15% of the
service time. CSCI A and CSCI B are relatively small
compared to the remainder of the ground segment software;
accounting for a combined total of 3% of the source lines of
code but being responsible for 23-26% of losses in proficiency
in 2008. The uncertainty on this number is because of recent
discrepancies under investigation, whose root cause is yet to
be determined. Anecdotal evidence has been given that
suggests that CSCI A, deployed in late 2007, had higher than
anticipated failure rates and required rework that delayed
operational readiness of the system. Because of the anecdotal
and quantitative evidence of higher latent defect rates of CSCI
A and CSCI B as compared to the remainder of the TDRSS
ground segment software, these CSCIs were chosen as targets
of the automated source code analysis technology infusion.

III. FINDINGS

A. Findings Overview

Findings documented in this report are the result of using the
automated source code analysis tool to analyze CSCI A and
CSCI B in their entirety. Firmware components associated
with these CSCIs will be a source of future scrutiny but were
not analyzed in this study. Figure 4 — Original Finding
Categories shows the distribution of findings produced by the
tool as determined by maintainers of the software. The y-axis
indicates the number of findings produced by the tool and the
x-axis categorizes the findings. The four categories are
defined as follows. True Positive indicates that the maintainer
was able to identify the finding as a defect in the code that
needs corrected. This identification occurs using only the
automated source code analysis tool interface and output.
Requires Research indicates that the maintainer was not able
to determine whether the findin g is a true defect or not
without further analysis. False Positive indicates that the
maintainer was able to identify the finding as a non-defect
without further review. Finally, Vendor Software indicates
that a potential defect exists in off-the-shelf software rather
than software maintained in-house.

True	 Requires	 False	 Vendor

600

500

400

300

200

100

02/20/2008

Positive	 Research	 Positive	 Software

Figure 4 — Original Finding Categories

Approximately 19% of the findin gs were classified as
Requires Research, which could be a cause for concern
regarding the amount of effort required to further assess the
findings. Fortunately, of the 189 findings of this type, the vast
majority are likely non-defects. The two largest categories of
findings marked as Requires Research are Unreachable Code
(93 instances) and Redundant Condition (32 instances).
While these could be valid findin gs, experience with this tool
indicates that these types of findings (as well as some others)
are often a result of a single finding that the tool determines
would cause a processor reset. For example, a Null Pointer
Dereference causes an exception on a number of processors.
Logic in the tool states that given an exception, certain
portions of code will not be executed, resulting in
unreachable code, redundant conditions, uninitialized
variables, invalid file descriptors; useless assignments or
memory leaks (not an exhaustive list).

Given this history, having developers to elinunate definite
true positives known to cause processor resets prior to
evaluating findings categorized as Requires Research will
likely result in a marked reduction in the number of defects
reported by the tool even though many of these defects do not
appear to be directly related to the defect corrected. This
study cannot await such modifications to the software to
determine if this holds true in every case. So ; rather than
count all findings marked as Requires Research as False
Positive and possibly understate the number of defects, the
remainder of discussion in this paper will consider all items
categorized as Requires Research to be true positives except
those marked as Unreachable Code and Redundant Condition.
This approach allows the study to proceed without performing
extensive review of the 189 findings categorized as Requires
Research with the reasonable assumption that the 125 findings
of types Unreachable Code and Redundant Condition are
False Positive while the remaining 64 findings categorized as
Requirements Research are True Positive. The simplified
categorization of findings is shown in Figure S — Simplified
Findings Categories, including incorporation of Vendor
Software as False Positive. Divisions in bars distinguish the
origin of the findings, whereas the x-axis shows the final
categorization of findings.

loo

600

500

n Vendor Software	 400

n False Positive
300

n Requires Research

True Positive	 200

100

o

True Positive False Positive

Figure S — Simplified Findings Categories

B. Findings Content

According to the simplified findings categories, a total of
585 findings were produced by the tool that were determined
to be True Positive. This section discusses the True Positive
findings in more detail. Any reference to findings in this
section as well as the next section entitled FINDINGS IN
CONTEXT is constrained to those of the True Positive
persuasion. In further discussion, the CSCI B will be
discussed as a whole as it was analyzed in this manner but
CSCI A will be broken down into CSC B, CSC C, and CSC
D.

One avenue to question is how findings compare across
different components analyzed. In order to compare findings
across components, the number of findin gs was normalized by
dividing the number of findings in each category by thousands
of source lines of code (KSLOC) in the applicable component.

Findings were not found to be highly consistent among
different components analyzed though some similarities exist.
Consistency among components was determined by
concentrations of findings of a given type among components.
For this study, a findin g is said to be concentrated if it has
more than 1 defect per KSLOC and somewhat concentrated if
more than 0.5 defects per KSLOC. CSCI B had findings most
concentrated in category Uninitialized Variable. CSC B had
no high concentration of findings. CSC C had findings most
concentrated in Unreachable Code. CSC D had
concentrations in Useless Assignment and Ignored Return
Value with a lesser concentration in Negative File Descriptor.
It is clear that no significant overlap re garding concentration
of findings exists among the components. Each was
developed by different developers, with some small overlaps
in personnel, even though all components of CSCI A were
developed within a single organization. Note that
explanations of findings types are given in APPENDIX B.

Figure 6 — Concentration of Finding Types illustrates the
distribution of findings. Defect type names are not shown for
the sake of readability. The horizontal axis represents the
number of findings per KSLOC. Ovals highlight the areas of
concentrations of findings. Table 3 — Defect Counts By Type
Per CSC found in APPENDIXA provides a detailed
breakdown of the counts (rather than densities) of defects
across types and components.

02/20/2008
	

4

n CSCIB n CSCIA-CSCB n CSCIA-CSCC n CSCIA-CSCD

ILL
Figure 6 — Concentration of Finding Types

A second avenue to examine is the overall concentration
of findings in each component. The overall concentration
uses the same method as the previous comparison but
considers all findings together regardless of category. Table I
— CSCI Sizes and Finding Densities shows the findings
density of the components analyzed using thousands of non-
coinment source lines (K-NCSL). This measure is given here
since this type of automated source code analysis tool only
operates on executable code, discarding continents and blank
lines. Later portions of this report provide data in terms of
KSLOC to allow comparison of data for use in other research
efforts. It is noteworthy that the smaller components have a
significantly larger finding density than the larger
components. This finding agrees with [2] and [3]; which
indicate that small modules have a significant share of overall
defects in a system; possibly because smaller modules are
overlooked as a source of errors because of the conventional
wisdom that larger modules have higher defect densities.

Component K-NCSL Findings / K-NCSL

CSCI B 121 1.8634

CSCI A - CSC B 139 1.1571

CSCI A - CSC C 22 3.7156

CSCI A - CSC D 29 4.1332

Table 1— CSCI Sizes and Finding Densities

C. Time to Produce and Review Findings

Execution of the tool and disposition of the findings for the
four components identified required 124.5 man hours. The
code analyzed consisted of 439 KSLOC in total of which 59
KSLOC were blank lines. 134 KSLOC were continents and
with 311 K-NCSL. The source code was distributed over
1,245 separate source files. The time to identify each true
positive finding was approximately 15 minutes. Future runs
of the tool are expected to contain only a small fraction of the
number of findin gs from this usage of the tool given that the
current findings have already been identified and saved for
future reference. Filtering capabilities distinguish findings
that have already been reviewed from new findings-

Considerations of the implications of time to use the tool
versus its benefits can be found in the section entitled
LOOKING FOR TVA RD.

IV. FINDINGS IN CONTEXT

A. Baseline Context Data

Data collection on the amount of time necessary to
implement a software change request has occurred over the
past year in the TDRSS ground segment and will continue as
part of software process improvement initiatives. These
preliminary data indicate that the time to implement a change
request in response to a discrepancy report is 34 hours on
average. This accounts for the software engineer's time to
review and update requirements and desi gn inforniation,
implement and Lunt test a change, and perform inspections on
the requirements, design, and source code. Additional time
must be considered for the Software Review Board (SRB) to
approve the change ; independent quality assurance review of
changes, generation and execution of software and operations
test and deployment plans, and delivery of the change to the
operational system. These additional activities often operate
on groups of change requests rather than individual change
requests, so analysis was needed to determine the portion of
hours from each software delivery to attribute to individual
change requests.

The contents of eight deliveries in the calendar year 2008
were analyzed against project schedules for those deliveries to
determine the amount of effort associated with each
discrepancy report that is in addition to programmer
implementation and unit test. The deliveries consisted of
corrections to discrepancy reports as well as change requests
in support of new capabilities to the TDRSS ground segment.
Operational enhancements to the ground segment tend to get
broken into relatively small units of work as part of the
change request process in order to make the changes more
manageable. Because of the way changes are subdivided, the
proportion of configuration mana gement, test, and delivery
effort for an enhancement is very much the same as for a
discrepancy report correction. Therefore, even though the
proportion of enhancements and discrepancy corrections is not
uniform in deliveries (approximately one-third of the content
of deliveries in 2008 was discrepancy correction), the average
amount of effort to correct a discrepancy can be simply stated
as the total effort for all deliveries in the time period divided
by the number of change requests in the same period. This
number is approximately 13.6 hours per discrepancy report or
change request. Combining this number with the
implementation time referenced earlier, the average hours of
effort to correct a single discrepancy report is 47.6 hours.

The average data loss per software discrepancy report was
0.3.5 hours for the period 2003 to 2007- When the year 2008
is included the average is reduced to 0.30 but this is artificial
in that many discrepancy reports without data loss attributed
were imported from a legacy discrepancy reporting system
into the operations discrepancy reporting system in 2008 in

2.5

2.0

1.5

1.0
0.5

LO.0

CSCI B CSCI A
CSC B

CSCI A
CSC C

CSCI A
CSC D

Routine 200 130 78 118

Urgent 25 31 3 0

KSLOC 222 204 29 39

Defects/KSLOC 1.01 0.79 2.80 3.01

Urgent/KSLOC 0.11 0.15 0.10 0.00

Urgent Loss(hrs) 8.75 10.85 1.05 0.00

Table 2 — Findings by Criticality

02/20/2008
	

5

order to consolidate reporting systems. Unfortunately, a clear
method of automatically distinguishing legacy versus new
discrepancies was not devised at the time and the 2008
numbers will be skewed until the reports can be manually
sifted to separate old from new.

B. Tool Findings in the Baseline Context

Table 2 — Findings by Criticality shows the distribution of
defects across CSCs as reported by the tool. Routine defects
are those which should be fixed but have no strong driver as
to how soon the fix should occur. These defects pertain more
to maintainability of the code than correct operation. Urgent
defects are those that are perceived to have noticeable
operational impacts, where data corruption or processor
resets—or similar operationally impacting events—will occur
under specific sets of conditions. Urgent Loss captures the
quantity of Urgent defects found with respect to the average
loss per discrepancy report.

Based on these data, it is expected that correcting the 59
urgent findings from the tool in CSCI A and B would result in
an expected reduction of 20.65 hours of loss over a year,
which is equivalent to nearly half of the software loss for 2008
and nearly a third of the average yearly loss recorded for the
ground segment software.

C. Comparison to External Entities

Other groups have analyzed software defects, which may
lend insight to the defect levels observed from this analysis.
While the other groups did not restrict their observations to
source code defects found by automated source code analysis
tools, their results provide a point of departure for
understanding the TDRSS ground segment results.

The Jet Propulsion Laboratory (JPL) performed a case
study that found 12 fielded defects per logical KSLOC in
ground software systems they developed [4]. Further, Capers
Jones found that CMMI Level 5 organizations deliver 1.05
defects per KSLOC [5]. The findings reported by the tool
account for a defect density of 1.18 defects per KSLOC in the
CSCs analyzed (note for purposes of comparison KSLOC is
used here rather than K-NCSL used in section III). The defect
rate when limiting the focus to NCSL is necessarily higher.

Coverity, which develops a competing automated source
code analysis tool, makes available results of its tool on open

source projects [6]. At the time of this writing, Coverity
reported an average of 0.605 findings per KSLOC over 96
projects. The findings reported were limited to the set of
defects most easy to understand as opposed to all possible
findings that can be reported by the tool. In this context, it
appears that the open source community performed better than
the mission critical software analyzed for this project;
however, the limited set of defects reported by Coverity in its
open source initiative may be a large factor in the differences
reported. This curiosity cannot be answered in this report and
is left to future work.

V. LOOKING FORWARD

To understand how to move forward with respect to
CodeSonar in the ground segment software maintenance, costs
and benefits must be weighed. The data collected in this
initiative is sufficient to make an informed decision based on
facts. These decisions use extrapolations of what was
observed in this study to predict potential outcomes. Many of
the data collected work well for these extrapolations but
others may be less certain. For instance, this study focused
solely on C and C++ source code while a large portion of the
ground segment code is Ada. There is a version of CodeSonar
for Ada but it remains to be seen if the defect rate and types in
C and C++ versus Ada are largely the same or different.
Previous work in [7] suggests that Ada has a lower overall
defect rate. However, a well established factor to adjust the
expected defect rate is not documented. So, we shall have to
assume that the defect rate and types are the same. Also, the
nominal amount of phase leakage of defects in the ground
segment is not a known quantity so assumptions must be made
here (phase leakage counts the number of defects that are not
removed in the phase where created). Despite these
uncertainties, reasonable arguments can be regarding the costs
and benefits of CodeSonar specifically and automated source
code analysis in general.

For the 204 most recently completed change requests, both
addressing discrepancy reports and enhancements to the
ground segment software, the average number of lines of code
modified or created was 209 and the average number of
programmer hours to implement and unit test changes was 48.
Given these numbers in the context of an average of 1.18
defects per KSLOC found with the automated source code
analysis tool in this initiative, each change request is expected
to have 0.25 total defects or approximately 0.03 urgent defects
associated with its change. Prograrnmers would be injecting
53 total defects or 6 urgent defects not previously in the
system that could be detected and prevented by use of the tool.
For the sake of argument, consider that 10% of the newly
introduced defects are discovered in test and require rework.
Had the defect been found by the pro grammer, 6.29 hours of
time for software test could have been prevented for each such
defect per the statistics kept for time per change request. So,
approximately 36 hours of wasted effort occurs by not using
automated source code analysis here. Now, consider that an

02/20,12008

additional 10% of the newly introduced defects are propagated
to operations and must be closed out via the discrepancy
report process. It was determined that 47.6 man hours were
needed to close a single discrepancy report. Using $50 per
hour as an (low) estimate of the cost of the hours to perform
work, each discrepancy caught in test costs $315 to rework
and each discrepancy caught in operations costs $2,380 to
correct. We correct six of each kind for a total cost of
$16,170. The expected data loss for the defects assumed to
enter operations is approximately two hours. Placing a dollar
value on the data loss is a difficult thing to accomplish. Data
loss in a critical timeframe, like a mission launch or
spacewalk, could impact the health and safety of the mission.
Loss of single pass of science data may carry lesser
consequences.

Assuming that the initial purchase of an automated source
code analysis tool is not an issue (already paid), the estimated
annual maintenance cost to the vendor for CodeSonar is
$50,000 for the more than eight million lines of code in the
ground segment. Given these numbers and forgetting data
loss for a moment, from a tool cost versus labor cost
perspective the reasonable answer would be to only purchase
CodeSonar for a subset of the ground segment software. The
selection of software to use CodeSonar would be a balance of
criticality of the software and fault proneness of the software.
A mitigating factor in this line of reasoning is the issue of data
loss. One serious incident that endangers the TDRSS fleet,
astronauts ; or causes hours of mission data loss requires much
more effort than the typical discrepancy closeout process.
Special teams are created in these circumstances to investigate
root causes ; taking into account all aspects of the ground and
space segments segment. This can be an extensive process
involving hundreds or, in the most severe cases, thousands of
hours of effort. The question to answer is whether automated
source code analysis tools prevent defect types that have
historically caused these types of anomalies. Over the past
three years, no severe anomaly (requiring thousands of hours
of investigation) was identified that could have been
prevented by automated source code analysis tools but
approximately one to two significant anomalies (requiring
hundreds of hours of work to close) each year might have
been prevented by use of automated source code analysis
tools. Again, for the sake of argument, assume that one such
anomaly requires a total of 500 man hours of investi gation and
reporting at the same low estimate of $50 per man hour. One
such incident requires $2.5,000 to investigate and resolve.
Using conservative numbers and combining prevention of one
significant incident a year with efficiencies gained in the
maintenance process with the addition of automated source
code analysis tools provides at savings dollar figure very near
to that of the annual maintenance cost for all ground segment
software. Similar arguments can be made for systems other
than TDRSS where critical failures can cause serious or
catastrophic results.

VI. CONCLUSION

The results of this study indicate that automated source
code analysis technology is beneficial where high availability
or proficiency is important. CodeSonar, specifically, and
automated source code analysis tools, in general, are effective
in finding source code defects not found by manual inspection
and test processes currently employed by the TDRSS ground
segment software sustaining engineering group. CodeSonar
provides a unique advantage in this instance in that it has
capability for C, C++, and Ada, which are the computer
languages that constitute the vast majority of TDRSS ground
segment software. Time to apply automated source code
analysis tools is not prohibitive for use as part of the standard
development process where an integrated findings database
exists to permit search and filtering of results and where the
tool can be run alongside or as part of the normal source code
build process. While extensive costs comparisons were not
performed for competing automated source code analysis
products, long term costs for CodeSonar are in line with the
benefits received. No major process changes are necessary to
incorporate static source code analysis into an organization
that already performs formal inspections. In conclusion, any
organization that depends on internally maintained software
for mission critical functions should strongly consider the
addition of automated source code analysis to its product
lifecvcle. Products in this arena have achieved technical
feasibility (at least for certain computer languages) at costs
comparable to technical and resource savings received when
applied to mission critical software.

REFERENCES

[1] R. S. Pressman. "Test Case Design" in Software Engineering, A
Practitioner's Approach, 4th ed., C. L. Liu, Ed. New York: McGraw-
Hill, 1997 7 pp 453-454

[2] A. Giine§ Korn et al, "Theory of relative defect proneness," Empirical
Sofhrare Engineering, Vol. 13, Issue 5, ACM Press, 2008, pp. 473-498.

[3] C. Withrow, "Error Density and Size in Ada Software," IEEE Sofhrare,
IEEE CS Press, 1990, pp. 26-30.

[4] J. Spagnuolo and J. Powell,"Defect Measurement and Analysis of JPL
Ground Software: A Case Study," presented at the 7th annual Ground
Systems Architecture Working Group, Manhattan Beach, California.
2004.

[5] C. Jones, Sofhrare ossessments, benchmarks, and best practices,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2000

[6] http:/iscan.coverity.com
[7] National Research Council Staff "Detailed Comparisons of Ada and

Other Third-Generation Progrannning Languages" in ADA and Ber-ond:
Sofhrare Policies for the Department of Defense, National Academy
Press, Washington, DC, 1997, pp. 92-100.

02/20/2008

APPENDIX A

Table 3 provides a cross reference of defect types to CSCs.

CSCI B CSCI A -
CSC B

CSCI A -
CSC C

CSCI A -
CSC D

Leak 4 1 0 0

Return Pointer to
Freed

1 0 0 0

Missing Return
Statement

1 2 0 0

Uninitialized
Variable

148 32 10 4

Double Unlock 6 0 0 0

delete Object
Created by new[]

2 5 0 0

Negative file
descriptor

11 4 10 18

Accept on socket
in wrong state

1 0 0 0

Listen on socket in
wrong state

1 0 0 0

malloc Buffer
Length
Unreasonable

1 6 0 0

Dangerous
Function Cast

8 0 0 0

Null Pointer
Dereference

15 34 2 6

Type Overrun 3 10 0 2

Buffer Overrun 8 4 0 2

Ignored Return
Value

3 12 8 29

Unused Value 2 2 3 3

Useless
Assignment

3 3 8 34

Redundant
Condition

3 3 5 0

Unreachable Code 4 11 22 0

File System Race
Condition

0 0 3 7

memcpy Length
Unreasonable

0 0 3 0

Free Null Pointer 0 0 0 0

Format String 0 2 2 0

Empty If
Statement

0 19 5 1

Double Close 0 1 0 2

strncpy Does Not
Null-terminate

0 0 0 2

Cast Alters Value 0 0 0 8

Buffer Underrun 0 6 0 0

Double Free 0 1 0 0

Null Test After
Dereference

0 2 0 0

strncpy Length
Unreasonable

0 0 0 0

Use After Free 0 1 0 0

Total 225 161 81 118

Table 3 — Defect Counts By Type Per CSC

02/20/2008

APPENDIX B

The following table provides descriptions of the types of
defects identified by CodeSonar in the TDRSS ground
segment.

Defect Type Description

Accept on socket in A socket operation is performed on a socket
wrong state that has not in the correct state for that

operation.

Buffer Overrun A read or write to data after the end of an
object in memory.

Buffer Underrun A read or write to data before the beginning of
an object in memory.

Cast Alters Value A cast operation causes a value to be
changed.

Dangerous Function A function pointer is cast to another function
Cast pointer that has an incompatible signature or

return type.

delete Object An attempt to release memory obtained with
Created by new[] new[] using delete.

Double Close An attempt to close a file or socket that has
already been closed.

Double Free Two calls to free on the same object.

Double Unlock A mutex has been unlocked twice with no
intervening lock.

Empty If Statement

File System Race File System Race Condition, which is also
Condition known as "TOCTTOU (Time of Check To

Time of Use)" vulnerabilities occur when a
function that uses a named file follows a
function that checks a named file. The
triggering functions for this warning class are
the use functions.

Format String A function that should have a format string
passed in a particular argument position has
been passed a string that either is not a
format string or is from an untrusted source.

Free Null Pointer An attempt to free a null pointer.

Ignored Return The value returned by some function has not
Value been used.

Leak Dynamically allocated storage has not been
freed.

Listen on socket in A socket operation is performed on a socket
wrong state that has not in the correct state for that

operation.

malloc Buffer Length A function is passed a length parameter that
Unreasonable is negative or extremely large.

memcpy Length A function is passed a length parameter that
Unreasonable is negative or extremely large.

Missing Return At least one path through a non-void return-
Statement type function does not contain a return

statement.

Negative file An attempt to close a file or socket that has
descriptor already been closed.

Defect Type Description

Null Pointer An attempt to dereference a pointer to the
Dereference zero page (that is, any address in the range

0..4096).
Null Test After A pointer is NULL-checked when it must
Dereference already have been dereferenced.

Redundant Condition Some condition is either always or never
satisfied.

Return Pointer to A procedure returns a pointer to memory that
Freed has already been freed.

strncpy Does Not The "source" string in a call to strncpy does
Null-terminate not contain a null terminator.

strncpy Length A function is passed a length parameter that
Unreasonable is negative or extremely large.

Type Overrun Code overruns a boundary within an
aggregate type.

Uninitialized Variable An attempt to use the value of a variable that
has not been initialized.

Unreachable Code Some of the code in a function is not
reachable from the function entry point under
any circumstances.

Unused Value A variable is assigned a value, but that value
is never subsequently used on any execution
path.

Use After Free A dereference of a pointer to a freed object.

Useless Assignment Some assignment always assigns the value
that the variable being modified already has.

